New Tertiary Phosphine Palladium Hydride Complexes

By H. MUNAKATA and M. L. H. GREEN*

(Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR)

Summary A new route to the palladium hydride complexes, trans- $(R^1_3P)_2PdHCl, R^1 = cyclohexylor isopropyl,$ is described involving use¹ of a hydridoborohydridecomplex, <math>trans- $(R^1_3P)_2MH(BH_4)$, M = Ni or Pd, as a reducing agent and a tertiary phosphine ligands exchange reaction.

REDUCTION of trans- $(R^1_3P)_2PdCl_2$, $R^1 = cyclohexyl or iso$ propyl, with borohydride reagents has failed to givehydride derivatives. However, ¹H n.m.r. studies show that $treatment of trans-<math>(R^2_3P)_2PdCl_2$, $R^2 = Et$, Pr^n , or Bu^n , with trans- $[(Cy)_3P]_2NiH(BH_4)$ [(Cy) = cyclohexyl] gives an equilibrium mixture of hydrides, e.g.

$$\begin{array}{l} (\mathrm{R}^{2}{}_{3}\mathrm{P})_{2}\mathrm{PdCl}_{2}+[(\mathrm{Cy})_{3}\mathrm{P}]_{2}\mathrm{NiH}(\mathrm{BH}_{4}) \xrightarrow{\mathrm{B}_{2}\mathrm{H}_{6}\uparrow} \\ (\mathrm{R}^{2}{}_{3}\mathrm{P})_{2}\mathrm{MHCl}+(\mathrm{R}^{2}{}_{3}\mathrm{P})[(\mathrm{Cy})_{3}\mathrm{P}]\mathrm{MHCl}+[(\mathrm{Cy})_{3}\mathrm{P}]_{2}\mathrm{MHCl} \\ \mathrm{M}=\mathrm{Ni} \text{ and } \mathrm{Pd}, \qquad \mathrm{R}^{2}=\mathrm{Et}, \ \mathrm{Pr}^{\mathrm{n}}, \ \mathrm{or} \ \mathrm{Bu}^{\mathrm{n}}, \\ (\mathrm{Cy})=\mathrm{cyclohexyl}. \end{array}$$

Addition of $(Cy)_3P$ to this mixture allows isolation of $trans-[(Cy)_3P]_2PdHCl$ and $trans-[(Cy)_3P]_2NiHCl$ as a mixture. These hydrides may be partly separated by recrystallization.

The pure colourless stable palladium hydride, *trans*- $[(Cy)_3P]_2PdHCl$ is formed by the cyclic route shown in the Scheme.

Using this route, the palladium hydride complexes, $(R^1_3P)_2PdHCl$ and the palladium hydridoborohydride complexes $(R^1_3P)_2PdH(BH_4)$, $R^1 = (Cy)$ or Pr^i , have been

prepared and fully characterized. These complexes are stable at room temperature under argon, except $(Pr_{3}P)_{2}$ -PdH(BH₄) which decomposes within a few hours. The data are given in the Table.

In the ¹H n.m.r. spectra of the hydridoborohydride complexes the band at high field (τ 29·7) of complex (V) occurs as a triplet of quintets, which may be assigned to the terminal hydrogen bound to Ni. The terminal hydrogen bound to the metal couples with the two *cis*-³¹P nuclei giving a triplet and it appears that this terminal hydrogen also couples equally with all four BH₄ hydrogens, thereby further splitting each component of the triplet into a quintet.

The apparent equivalence of all four BH_4 hydrogens suggests that a rapid intramolecular exchange occurs, as commonly observed in metal- BH_4 derivatives.²

The Pd- 1 H band at high field (τ 23.2) of complex (IV) appears as five broad lines and these may be supposed to

I.r. and ¹H n.m.r. data of hydride complexes

Compounds		I.r. dataª		¹ H n.m.r. data		
(all <i>trans-</i>)		ν (M–H) cm ⁻¹	δ (M–H) cm ⁻¹	${}^{\mathrm{M-1}}_{ au^{\mathrm{b}}}$	J (H-P) Hz	$J (H-BH_4) Hz$
[(Cy) ₃ P] ₂ PdHCl (Pr ⁱ ₃ P) ₂ PdHCl	(I) (II)	$\begin{array}{c} 2002 \\ 2010 \end{array}$	$\begin{array}{c} 726 \\ 740 \end{array}$	24.4c,f 24.5c,f	$4 \cdot 1 \\ 4 \cdot 6$	
$[(Cy)_3P]_2PdH(BH_4)$	(III)	2002	730	e	e	e
$(Pr_{3}^{1}P)_{2}PdH(BH_{4})$	(IV)	2013	740	23·2d,h	ca. 9	ca. 9
$(Pr_{3}^{i}P)_{2}NiH(BH_{4})$	(V)			29.7d,g	70.5	6 ·0
$[(Cy)_{3}P]_{2}PdHBr$	(VI)	1991	720	23.3c,f	6 ·0	

^a Nujol mull. ^b Me₄Si internal reference. ^c Solution in benzene. ^d Solution in toluene, -10° . ^e¹H n.m.r. spectrum has not been obtained owing to the low solubility of the complex. ^f Triplet. ^g A triplet of quintets. ^h Seven lines.

be the most intense of the seven lines, if J(H-P) is approximately the same as $J(H-BH_4)$ (ca. 9 Hz).

Bands due to the BH₄ hydrogens are not directly observed, probably due to line broadening by the "B quadrupole moment.

The complex (I) undergoes a typical metathetical replacement of Cl and gives, for example, the Br analogue (VI).

We thank Mitsubishi Chemical Industries Ltd. for a scholarship 1969-1971 (to H.M.).

(Received, May 11th, 1970; Com. 714.)

¹ M. L. H. Green, H. Munakata, and Taro Saito, Chem. Comm., 1969, 1287.

² B. D. James, R. K. Nanda, and M. G. Wallbridge, Inorg. Chem., 1967, 6, 1979, and references therein.